Open-Domain Name Error Detection using a Multi-Task RNN
نویسندگان
چکیده
Out-of-vocabulary name errors in speech recognition create significant problems for downstream language processing, but the fact that they are rare poses challenges for automatic detection, particularly in an open-domain scenario. To address this problem, a multi-task recurrent neural network language model for sentence-level name detection is proposed for use in combination with out-of-vocabulary word detection. The sentence-level model is also effective for leveraging external text data. Experiments show a 26% improvement in name-error detection F-score over a system using n-gram lexical features.
منابع مشابه
Multi-Domain Joint Semantic Frame Parsing Using Bi-Directional RNN-LSTM
Sequence-to-sequence deep learning has recently emerged as a new paradigm in supervised learning for spoken language understanding. However, most of the previous studies explored this framework for building single domain models for each task, such as slot filling or domain classification, comparing deep learning based approaches with conventional ones like conditional random fields. This paper ...
متن کاملMulti-View Face Detection in Open Environments using Gabor Features and Neural Networks
Multi-view face detection in open environments is a challenging task, due to the wide variations in illumination, face appearances and occlusion. In this paper, a robust method for multi-view face detection in open environments, using a combination of Gabor features and neural networks, is presented. Firstly, the effect of changing the Gabor filter parameters (orientation, frequency, standard d...
متن کاملDesign and implementation of Persian spelling detection and correction system based on Semantic
Persian Language has a special feature (grapheme, homophone, and multi-shape clinging characters) in electronic devices. Furthermore, design and implementation of NLP tools for Persian are more challenging than other languages (e.g. English or German). Spelling tools are used widely for editing user texts like emails and text in editors. Also developing Persian tools will provide Persian progr...
متن کاملRecurrent neural network models for disease name recognition using domain invariant features
Hand-crafted features based on linguistic and domain-knowledge play crucial role in determining the performance of disease name recognition systems. Such methods are further limited by the scope of these features or in other words, their ability to cover the contexts or word dependencies within a sentence. In this work, we focus on reducing such dependencies and propose a domain-invariant frame...
متن کاملRare Sound Event Detection Using 1d Convolutional Recurrent Neural Networks
Rare sound event detection is a newly proposed task in IEEE DCASE 2017 to identify the presence of monophonic sound event that is classified as an emergency and to detect the onset time of the event. In this paper, we introduce a rare sound event detection system using combination of 1D convolutional neural network (1D ConvNet) and recurrent neural network (RNN) with long shortterm memory units...
متن کامل